Opinion mining in social media as a tool to measure consumer (in)satisfaction

Authors

DOI:

https://doi.org/10.24208/rebecin.v8i.235

Keywords:

Desicion tree; Sentiment analysis; Text mining; Data mining.

Abstract

A quantitative study that aims to explore the contribution of opinion mining in databases extracted from Facebook for the measurement of consumer (in)satisfaction. It aims to propose a flow that assists in the steps of the process of knowledge discovery in text and select tools for opinion mining at the sentence level, where the positive, negative and neutral sentiment is analyzed. A car brand database extracted from Facebook with four pre-processing treatments is submitted to the proposed flow. The Naïve Bayes, SMO and J48 algorithms in the Weka tool are used for the processing stage. It presents satisfactory results in opinion mining with the best hit rate obtained using the SMO algorithm.It proposes future work in CSC (Consumer Care Service) databases with the application of this developed methodology and studies to discover the causes of consumer (in)satisfaction found in CSC and CSC 2.0 databases.

Downloads

Download data is not yet available.

References

KOTLER, P. Administração de marketing. 10. ed. São Paulo: Afiliada, 2012.

LIMA, A. P. L. et al. Comportamento do consumidor. Porto Alegre: SAGAH, 2019.

LIU, B. Sentiment analysis: mining opinions, sentiments and emotions. New York: Cambridge University, 2015.

MERLO, E.; CERIBELI, H. Comportamento do consumidor. Rio de Janeiro: LTC, 2014.

RECUERO, R. Redes Sociais na Internet. Porto Alegre: Ed. Sulina, 2009.

SCHIESSL, M.; BRÄSCHER, M. Descoberta de conhecimento em texto aplicada a um sistema de atendimento ao consumidor. Revista Ibero-Americana de Ciência da Informação, v. 4, n. 2, 2011. Disponível em: http://periodicos.unb.br/ojs311/index.php/RICI/article/view/1682/1481. Acesso em: 23 fev. 2021.

Published

2021-10-28

How to Cite

SANCLIMENT IGLESIAS, L.; FUKUMI TSUNODA, D. . Opinion mining in social media as a tool to measure consumer (in)satisfaction. Revista Brasileira de Educação em Ciência da Informação, São Paulo, v. 8, p. 1–13, 2021. DOI: 10.24208/rebecin.v8i.235. Disponível em: https://abecin.emnuvens.com.br/rebecin/article/view/235. Acesso em: 28 dec. 2024.